skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "White, Lauren A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 16, 2026
  2. Close contacts between individuals provide opportunities for the transmission of diseases, including COVID-19. While individuals take part in many different types of interactions, including those with classmates, co-workers and household members, it is the conglomeration of all of these interactions that produces the complex social contact network interconnecting individuals across the population. Thus, while an individual might decide their own risk tolerance in response to a threat of infection, the consequences of such decisions are rarely so confined, propagating far beyond any one person. We assess the effect of different population-level risk-tolerance regimes, population structure in the form of age and household-size distributions, and different interaction types on epidemic spread in plausible human contact networks to gain insight into how contact network structure affects pathogen spread through a population. In particular, we find that behavioural changes by vulnerable individuals in isolation are insufficient to reduce those individuals’ infection risk and that population structure can have varied and counteracting effects on epidemic outcomes. The relative impact of each interaction type was contingent on assumptions underlying contact network construction, stressing the importance of empirical validation. Taken together, these results promote a nuanced understanding of disease spread on contact networks, with implications for public health strategies. 
    more » « less
  3. Close contacts between individuals provide opportunities for the transmission of diseases, including COVID-19. While individuals take part in many different types of interactions, including those with classmates, co-workers and household members, it is the conglomeration of all of these interactions that produces the complex social contact network interconnecting individuals across the population. Thus, while an individual might decide their own risk tolerance in response to a threat of infection, the consequences of such decisions are rarely so confined, propagating far beyond any one person. We assess the effect of different population-level risk-tolerance regimes, population structure in the form of age and household-size distributions, and different interaction types on epidemic spread in plausible human contact networks to gain insight into how contact network structure affects pathogen spread through a population. In particular, we find that behavioural changes by vulnerable individuals in isolation are insufficient to reduce those individuals’ infection risk and that population structure can have varied and counteracting effects on epidemic outcomes. The relative impact of each interaction type was contingent on assumptions underlying contact network construction, stressing the importance of empirical validation. Taken together, these results promote a nuanced understanding of disease spread on contact networks, with implications for public health strategies. 
    more » « less
  4. Death is a common outcome of infection, but most disease models do not track hosts after death. Instead, these hosts disappear into a void. This assumption lacks critical realism, because dead hosts can alter host–pathogen dynamics. Here, we develop a theoretical framework of carbon‐based models combining disease and ecosystem perspectives to investigate the consequences of feedbacks between living and dead hosts on disease dynamics and carbon cycling. Because autotrophs (i.e. plants and phytoplankton) are critical regulators of carbon cycling, we developed general model structures and parameter combinations to broadly reflect disease of autotrophic hosts across ecosystems. Analytical model solutions highlight the importance of disease–ecosystem coupling. For example, decomposition rates of dead hosts mediate pathogen spread, and carbon flux between live and dead biomass pools are sensitive to pathogen effects on host growth and death rates. Variation in dynamics arising from biologically realistic parameter combinations largely fell along a single gradient from slow to fast carbon turnover rates, and models predicted higher disease impacts in fast turnover systems (e.g. lakes and oceans) than slow turnover systems (e.g. boreal forests). Our results demonstrate that a unified framework, including the effects of pathogens on carbon cycling, provides novel hypotheses and insights at the nexus of disease and ecosystem ecology. 
    more » « less
  5. null (Ed.)
    Host heterogeneity in pathogen transmission is widespread and presents a major hurdle to predicting and minimizing disease outbreaks. Using Drosophila melanogaster infected with Drosophila C virus as a model system, we integrated experimental measurements of social aggregation, virus shedding, and disease-induced mortality from different genetic lines and sexes into a disease modelling framework. The experimentally measured host heterogeneity produced substantial differences in simulated disease outbreaks, providing evidence for genetic and sex-specific effects on disease dynamics at a population level. While this was true for homogeneous populations of single sex/genetic line, the genetic background or sex of the index case did not alter outbreak dynamics in simulated, heterogeneous populations. Finally, to explore the relative effects of social aggregation, viral shedding and mortality, we compared simulations where we allowed these traits to vary, as measured experimentally, to simulations where we constrained variation in these traits to the population mean. In this context, variation in infectiousness, followed by social aggregation, was the most influential component of transmission. Overall, we show that host heterogeneity in three host traits dramatically affects population-level transmission, but the relative impact of this variation depends on both the susceptible population diversity and the distribution of population-level variation. 
    more » « less
  6. Barbarossa, Maria Vittoria (Ed.)
    Human behavior (movement, social contacts) plays a central role in the spread of pathogens like SARS-CoV-2. The rapid spread of SARS-CoV-2 was driven by global human movement, and initial lockdown measures aimed to localize movement and contact in order to slow spread. Thus, movement and contact patterns need to be explicitly considered when making reopening decisions, especially regarding return to work. Here, as a case study, we consider the initial stages of resuming research at a large research university, using approaches from movement ecology and contact network epidemiology. First, we develop a dynamical pathogen model describing movement between home and work; we show that limiting social contact, via reduced people or reduced time in the workplace are fairly equivalent strategies to slow pathogen spread. Second, we develop a model based on spatial contact patterns within a specific office and lab building on campus; we show that restricting on-campus activities to labs (rather than labs and offices) could dramatically alter (modularize) contact network structure and thus, potentially reduce pathogen spread by providing a workplace mechanism to reduce contact. Here we argue that explicitly accounting for human movement and contact behavior in the workplace can provide additional strategies to slow pathogen spread that can be used in conjunction with ongoing public health efforts. 
    more » « less
  7. Abstract Accurate forecasts can enable more effective public health responses during seasonal influenza epidemics. For the 2021–22 and 2022–23 influenza seasons, 26 forecasting teams provided national and jurisdiction-specific probabilistic predictions of weekly confirmed influenza hospital admissions for one-to-four weeks ahead. Forecast skill is evaluated using the Weighted Interval Score (WIS), relative WIS, and coverage. Six out of 23 models outperform the baseline model across forecast weeks and locations in 2021–22 and 12 out of 18 models in 2022–23. Averaging across all forecast targets, the FluSight ensemble is the 2ndmost accurate model measured by WIS in 2021–22 and the 5thmost accurate in the 2022–23 season. Forecast skill and 95% coverage for the FluSight ensemble and most component models degrade over longer forecast horizons. In this work we demonstrate that while the FluSight ensemble was a robust predictor, even ensembles face challenges during periods of rapid change. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025